Amazon (MLS-C01) Exam Questions And Answers page 1
A bank wants to launch a low-rate credit promotion. The bank is located in a town that recently experienced economic hardship. Only some of the bank's customers were affected by the crisis, so the bank's credit team must identify which customers to target with the promotion. However, the credit team wants to make sure that loyal customers' full credit history is considered when the decision is made.
The bank's data science team developed a model that classifies account transactions and understands credit eligibility. The data science team used the XGBoost algorithm to train the model. The team used 7 years of bank transaction historical data for training and hyperparameter tuning over the course of several days.
The accuracy of the model is sufficient, but the credit team is struggling to explain accurately why the model denies credit to some customers. The credit team has almost no skill in data science.
What should the data science team do to address this issue in the MOST operationally efficient manner?
The bank's data science team developed a model that classifies account transactions and understands credit eligibility. The data science team used the XGBoost algorithm to train the model. The team used 7 years of bank transaction historical data for training and hyperparameter tuning over the course of several days.
The accuracy of the model is sufficient, but the credit team is struggling to explain accurately why the model denies credit to some customers. The credit team has almost no skill in data science.
What should the data science team do to address this issue in the MOST operationally efficient manner?
Use Amazon SageMaker Studio to rebuild the model. Create a notebook that uses the XGBoost training container to perform model training. Activate Amazon SageMaker Debugger, and configure it to calculate and collect Shapley values. Create a chart that shows features and SHapley Additive exPlanations (SHAP) values to explain to the credit team how the features affect the model outcomes.
Create an Amazon SageMaker notebook instance. Use the notebook instance and the XGBoost library to locally retrain the model. Use the plot_importance() method in the Python XGBoost interface to create a feature importance chart. Use that chart to explain to the credit team how the features affect the model outcomes.
Use Amazon SageMaker Studio to rebuild the model. Create a notebook that uses the XGBoost training container to perform model training. Deploy the model at an endpoint. Use Amazon SageMaker Processing to post-analyze the model and create a feature importance explainability chart automatically for the credit team.
Exploratory Data Analysis
Machine Learning Implementation and Operations
A city wants to monitor its air quality to address the consequences of air pollution. A Machine Learning Specialist needs to forecast the air quality in parts per million of contaminates for the next 2 days in the city. As this is a prototype, only daily data from the last year is available.
Which model is MOST likely to provide the best results in Amazon SageMaker?
Which model is MOST likely to provide the best results in Amazon SageMaker?
Use the Amazon SageMaker k-Nearest-Neighbors (kNN) algorithm on the single time series consisting of the full year of data with a predictor_type of regressor.
Use Amazon SageMaker Random Cut Forest (RCF) on the single time series consisting of the full year of data.
Use the Amazon SageMaker Linear Learner algorithm on the single time series consisting of the full year of data with a predictor_type of regressor.
Use the Amazon SageMaker Linear Learner algorithm on the single time series consisting of the full year of data with a predictor_type of classifier.
Model Development
Machine Learning Implementation and Operations
A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.
Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.
Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)
Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.
Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)
Configure the endpoint to use Amazon Elastic Inference (EI) accelerators.
Create a new endpoint configuration with two production variants.
Configure the endpoint to automatically scale with the InvocationsPerInstance metric.
Deploy a second instance pool to support a blue/green deployment of models.
Reconfigure the endpoint to use burstable instances.
Model Development
Machine Learning Implementation and Operations
A company has set up and deployed its machine learning (ML) model into production with an endpoint using Amazon SageMaker hosting services. The ML team has configured automatic scaling for its SageMaker instances to support workload changes. During testing, the team notices that additional instances are being launched before the new instances are ready. This behavior needs to change as soon as possible.
How can the ML team solve this issue?
How can the ML team solve this issue?
Decrease the cooldown period for the scale-in activity. Increase the configured maximum capacity of instances.
Replace the current endpoint with a multi-model endpoint using SageMaker.
Set up Amazon API Gateway and AWS Lambda to trigger the SageMaker inference endpoint.
Increase the cooldown period for the scale-out activity.
Model Development
Machine Learning Implementation and Operations
A company has video feeds and images of a subway train station. The company wants to create a deep learning model that will alert the station manager if any passenger crosses the yellow safety line when there is no train in the station. The alert will be based on the video feeds. The company wants the model to detect the yellow line, the passengers who cross the yellow line, and the trains in the video feeds. This task requires labeling. The video data must remain confidential.
A data scientist creates a bounding box to label the sample data and uses an object detection model. However, the object detection model cannot clearly demarcate the yellow line, the passengers who cross the yellow line, and the trains.
Which labeling approach will help the company improve this model?
A data scientist creates a bounding box to label the sample data and uses an object detection model. However, the object detection model cannot clearly demarcate the yellow line, the passengers who cross the yellow line, and the trains.
Which labeling approach will help the company improve this model?
Use an Amazon SageMaker Ground Truth object detection labeling task. Use Amazon Mechanical Turk as the labeling workforce.
Use Amazon Rekognition Custom Labels to label the dataset and create a custom Amazon Rekognition object detection model. Create a private workforce. Use Amazon Augmented AI (Amazon A2I) to review the low-confidence predictions and retrain the custom Amazon Rekognition model.
Use Amazon Rekognition Custom Labels to label the dataset and create a custom Amazon Rekognition object detection model. Create a workforce with a third-party AWS Marketplace vendor. Use Amazon Augmented AI (Amazon A2I) to review the low-confidence predictions and retrain the custom Amazon Rekognition model.
Use an Amazon SageMaker Ground Truth semantic segmentation labeling task. Use a private workforce as the labeling workforce.
Exploratory Data Analysis
Model Development
A company ingests machine learning (ML) data from web advertising clicks into an Amazon S3 data lake. Click data is added to an Amazon Kinesis data stream by using the Kinesis Producer Library (KPL). The data is loaded into the S3 data lake from the data stream by using an Amazon Kinesis Data Firehose delivery stream. As the data volume increases, an ML specialist notices that the rate of data ingested into Amazon S3 is relatively constant. There also is an increasing backlog of data for Kinesis Data Streams and Kinesis Data Firehose to ingest.
Which next step is MOST likely to improve the data ingestion rate into Amazon S3?
Which next step is MOST likely to improve the data ingestion rate into Amazon S3?
Increase the number of S3 prefixes for the delivery stream to write to.
Decrease the retention period for the data stream.
Increase the number of shards for the data stream.
Add more consumers using the Kinesis Client Library (KCL).
Data Engineering
A company is building a demand forecasting model based on machine learning (ML). In the development stage, an ML specialist uses an Amazon SageMaker notebook to perform feature engineering during work hours that consumes low amounts of CPU and memory resources. A data engineer uses the same notebook to perform data preprocessing once a day on average that requires very high memory and completes in only 2 hours. The data preprocessing is not configured to use GPU. All the processes are running well on an ml.m5.4xlarge notebook instance.
The company receives an AWS Budgets alert that the billing for this month exceeds the allocated budget.
Which solution will result in the MOST cost savings?
The company receives an AWS Budgets alert that the billing for this month exceeds the allocated budget.
Which solution will result in the MOST cost savings?
Change the notebook instance type to a memory optimized instance with the same vCPU number as the ml.m5.4xlarge instance has. Stop the notebook when it is not in use. Run both data preprocessing and feature engineering development on that instance.
Keep the notebook instance type and size the same. Stop the notebook when it is not in use. Run data preprocessing on a P3 instance type with the same memory as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.
Change the notebook instance type to a smaller general purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an ml.r5 instance with the same memory size as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.
Change the notebook instance type to a smaller general purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an R5 instance with the same memory size as the ml.m5.4xlarge instance by using the Reserved Instance option.
Exploratory Data Analysis
Model Development
A company is building a line-counting application for use in a quick-service restaurant. The company wants to use video cameras pointed at the line of customers at a given register to measure how many people are in line and deliver notifications to managers if the line grows too long. The restaurant locations have limited bandwidth for connections to external services and cannot accommodate multiple video streams without impacting other operations.
Which solution should a machine learning specialist implement to meet these requirements?
Which solution should a machine learning specialist implement to meet these requirements?
Install cameras compatible with Amazon Kinesis Video Streams to stream the data to AWS over the restaurant's existing internet connection. Write an AWS Lambda function to take an image and send it to Amazon Rekognition to count the number of faces in the image. Send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.
Deploy AWS DeepLens cameras in the restaurant to capture video. Enable Amazon Rekognition on the AWS DeepLens device, and use it to trigger a local AWS Lambda function when a person is
recognized. Use the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.
recognized. Use the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.
Build a custom model in Amazon SageMaker to recognize the number of people in an image. Install cameras compatible with Amazon Kinesis Video Streams in the restaurant. Write an AWS Lambda function to take an image. Use the SageMaker endpoint to call the model to count people. Send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.
Build a custom model in Amazon SageMaker to recognize the number of people in an image. Deploy AWS DeepLens cameras in the restaurant. Deploy the model to the cameras. Deploy an AWS Lambda function to the cameras to use the model to count people and send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.
Exploratory Data Analysis
Model Development
A company is building a new version of a recommendation engine. Machine learning (ML) specialists need to keep adding new data from users to improve personalized recommendations. The ML specialists gather data from the users interactions on the platform and from sources such as external websites and social media.
The pipeline cleans, transforms, enriches, and compresses terabytes of data daily, and this data is stored in Amazon S3. A set of Python scripts was coded to do the job and is stored in a large Amazon EC2 instance. The whole process takes more than 20 hours to finish, with each script taking at least an hour. The company wants to move the scripts out of Amazon EC2 into a more managed solution that will eliminate the need to maintain servers.
Which approach will address all of these requirements with the LEAST development effort?
The pipeline cleans, transforms, enriches, and compresses terabytes of data daily, and this data is stored in Amazon S3. A set of Python scripts was coded to do the job and is stored in a large Amazon EC2 instance. The whole process takes more than 20 hours to finish, with each script taking at least an hour. The company wants to move the scripts out of Amazon EC2 into a more managed solution that will eliminate the need to maintain servers.
Which approach will address all of these requirements with the LEAST development effort?
Load the data into an Amazon Redshift cluster. Execute the pipeline by using SQL. Store the results in Amazon S3.
Load the data into Amazon DynamoDB. Convert the scripts to an AWS Lambda function. Execute the pipeline by triggering Lambda executions. Store the results in Amazon S3.
Create an AWS Glue job. Convert the scripts to PySpark. Execute the pipeline. Store the results in Amazon S3.
Create a set of individual AWS Lambda functions to execute each of the scripts. Build a step function by using the AWS Step Functions Data Science SDK. Store the results in Amazon S3.
Model Development
Machine Learning Implementation and Operations
A company is building a predictive maintenance model based on machine learning (ML). The data is stored in a fully private Amazon S3 bucket that is encrypted at rest with AWS Key Management Service (AWS KMS) CMKs. An ML specialist must run data preprocessing by using an Amazon SageMaker Processing job that is triggered from code in an Amazon SageMaker notebook. The job should read data from Amazon S3, process it, and upload it back to the same S3 bucket. The preprocessing code is stored in a container image in Amazon Elastic Container Registry (Amazon ECR). The ML specialist needs to grant permissions to ensure a smooth data preprocessing workflow.
Which set of actions should the ML specialist take to meet these requirements?
Which set of actions should the ML specialist take to meet these requirements?
Create an IAM role that has permissions to create Amazon SageMaker Processing jobs, S3 read and write access to the relevant S3 bucket, and appropriate KMS and ECR permissions. Attach the role to the SageMaker notebook instance. Create an Amazon SageMaker Processing job from the notebook.
Create an IAM role that has permissions to create Amazon SageMaker Processing jobs. Attach the role to the SageMaker notebook instance. Create an Amazon SageMaker Processing job with an IAM role that has read and write permissions to the relevant S3 bucket, and appropriate KMS and ECR permissions.
Create an IAM role that has permissions to create Amazon SageMaker Processing jobs and to access Amazon ECR. Attach the role to the SageMaker notebook instance. Set up both an S3 endpoint and a KMS endpoint in the default VPC. Create Amazon SageMaker Processing jobs from the notebook.
Create an IAM role that has permissions to create Amazon SageMaker Processing jobs. Attach the role to the SageMaker notebook instance. Set up an S3 endpoint in the default VPC. Create Amazon SageMaker Processing jobs with the access key and secret key of the IAM user with appropriate KMS and ECR permissions.
Model Development
Machine Learning Implementation and Operations
Comments