Exam Logo

Amazon (MLS-C01) Exam Questions And Answers page 16

A manufacturer is operating a large number of factories with a complex supply chain relationship where unexpected downtime of a machine can cause production to stop at several factories. A data scientist wants to analyze sensor data from the factories to identify equipment in need of preemptive maintenance and then dispatch a service team to prevent unplanned downtime. The sensor readings from a single machine can include up to 200 data points including temperatures, voltages, vibrations, RPMs, and pressure readings.

To collect this sensor data, the manufacturer deployed Wi-Fi and LANs across the factories. Even though many factory locations do not have reliable or high-speed internet connectivity, the manufacturer would like to maintain near-real-time inference capabilities.

Which deployment architecture for the model will address these business requirements?
Exploratory Data Analysis Model Development
A manufacturer of car engines collects data from cars as they are being driven. The data collected includes timestamp, engine temperature, rotations per minute (RPM), and other sensor readings. The company wants to predict when an engine is going to have a problem, so it can notify drivers in advance to get engine maintenance. The engine data is loaded into a data lake for training.

Which is the MOST suitable predictive model that can be deployed into production?
Model Development Machine Learning Implementation and Operations
A manufacturing company asks its machine learning specialist to develop a model that classifies defective parts into one of eight defect types. The company has provided roughly 100,000 images per defect type for training. During the initial training of the image classification model, the specialist notices that the validation accuracy is 80%, while the training accuracy is 90%. It is known that human-level performance for this type of image classification is around 90%.

What should the specialist consider to fix this issue?
Model Development Machine Learning Implementation and Operations
A manufacturing company has a large set of labeled historical sales data. The manufacturer would like to predict how many units of a particular part should be produced each quarter.

Which machine learning approach should be used to solve this problem?
Model Development Machine Learning Implementation and Operations
A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket. A Machine Learning Specialist wants to use SQL to run queries on this data.

Which solution requires the LEAST effort to be able to query this data?
Data Engineering Machine Learning Implementation and Operations
A manufacturing company uses machine learning (ML) models to detect quality issues. The models use images that are taken of the company's product at the end of each production step. The company has thousands of machines at the production site that generate one image per second on average.

The company ran a successful pilot with a single manufacturing machine. For the pilot, ML specialists used an industrial PC that ran AWS IoT Greengrass with a long-running AWS Lambda function that uploaded the images to Amazon S3. The uploaded images invoked a Lambda function that was written in Python to perform inference by using an Amazon SageMaker endpoint that ran a custom model. The inference results were forwarded back to a web service that was hosted at the production site to prevent faulty products from being shipped.

The company scaled the solution out to all manufacturing machines by installing similarly configured industrial PCs on each production machine. However, latency for predictions increased beyond acceptable limits. Analysis shows that the internet connection is at its capacity limit.

How can the company resolve this issue MOST cost-effectively?
Exploratory Data Analysis Machine Learning Implementation and Operations
A manufacturing company uses machine learning (ML) models to detect quality issues. The models use images that are taken of the company's product at the end of each production step. The company has thousands of machines at the production site that generate one image per second on average.

The company ran a successful pilot with a single manufacturing machine. For the pilot, ML specialists used an industrial PC that ran AWS IoT Greengrass with a long-running AWS Lambda function that uploaded the images to Amazon S3. The uploaded images invoked a Lambda function that was written in Python to perform inference by using an Amazon SageMaker endpoint that ran a custom model. The inference results were forwarded back to a web service that was hosted at the production site to prevent faulty products from being shipped.

The company scaled the solution out to all manufacturing machines by installing similarly configured industrial PCs on each production machine. However, latency for predictions increased beyond acceptable limits. Analysis shows that the internet connection is at its capacity limit.
How can the company resolve this issue MOST cost-effectively?
Exploratory Data Analysis Machine Learning Implementation and Operations
A manufacturing company wants to use machine learning (ML) to automate quality control in its facilities. The facilities are in remote locations and have limited internet connectivity. The company has 20 " of training data that consists of labeled images of defective product parts. The training data is in the corporate on-premises data center.

The company will use this data to train a model for real-time defect detection in new parts as the parts move on a conveyor belt in the facilities. The company needs a solution that minimizes costs for compute infrastructure and that maximizes the scalability of resources for training. The solution also must facilitate the company s use of an ML model in the low-connectivity environments.

Which solution will meet these requirements?
Model Development Machine Learning Implementation and Operations
A Marketing Manager at a pet insurance company plans to launch a targeted marketing campaign on social media to acquire new customers. Currently, the company has the following data in Amazon Aurora:

• Profiles for all past and existing customers
• Profiles for all past and existing insured pets
• Policy-level information
• Premiums received
• Claims paid

What steps should be taken to implement a machine learning model to identify potential new customers on social media?
Machine Learning Implementation and Operations AWS Machine Learning Services
A media company with a very large archive of unlabeled images, text, audio, and video footage wishes to index its assets to allow rapid identification of relevant content by the Research team. The company wants to use machine learning to accelerate the efforts of its in-house researchers who have limited machine learning expertise.

Which is the FASTEST route to index the assets?
Exploratory Data Analysis Model Development