Exam Logo

Microsoft (DP-100) Exam Questions And Answers page 5

You are hired as a data scientist at a winery. The previous data scientist used Azure Machine Learning.

You need to review the models and explain how each model makes decisions.

Which explainer modules should you use? To answer, select the appropriate options in the answer area.

NOTE: Each correct selection is worth one point.

Modeling Deployment and Monitoring
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You have a Python script named train.py in a local folder named scripts. The script trains a regression model by using scikit-learn. The script includes code to load a training data file which is also located in the scripts folder.

You must run the script as an Azure ML experiment on a compute cluster named aml-compute.

You need to configure the run to ensure that the environment includes the required packages for model training. You have instantiated a variable named aml-compute that references the target compute cluster.

Solution: Run the following code:


Does the solution meet the goal?
Data Preparation and Processing Modeling
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a new experiment in Azure Machine Learning Studio.

One class has a much smaller number of observations than the other classes in the training set.

You need to select an appropriate data sampling strategy to compensate for the class imbalance.

Solution: You use the Stratified split for the sampling mode.

Does the solution meet the goal?
Data Preparation and Processing Modeling
You are determining if two sets of data are significantly different from one another by using Azure Machine Learning Studio.

Estimated values in one set of data may be more than or less than reference values in the other set of data. You must produce a distribution that has a constant Type I error as a function of the correlation.

You need to produce the distribution.

Which type of distribution should you produce?
Data Preparation and Processing Modeling
You have an Azure Machine Learning workspace named workspace1 that is accessible from a public endpoint. The workspace contains an Azure Blob storage datastore named store1 that represents a blob container in an Azure storage account named account1. You configure workspace1 and account1 to be accessible by using private endpoints in the same virtual network.

You must be able to access the contents of store1 by using the Azure Machine Learning SDK for Python. You must be able to preview the contents of store1 by using Azure Machine Learning studio.

You need to configure store1.

What should you do? To answer, select the appropriate options in the answer area.

NOTE: Each correct selection is worth one point.

Designing and Implementing Data Science Solutions Data Preparation and Processing
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a model to predict the price of a student's artwork depending on the following variables: the student's length of education, degree type, and art form.

You start by creating a linear regression model.

You need to evaluate the linear regression model.

Solution: Use the following metrics: Mean Absolute Error, Root Mean Absolute Error, Relative Absolute Error, Accuracy, Precision, Recall, F1 score, and AUC.

Does the solution meet the goal?
Modeling Deployment and Monitoring
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You train a classification model by using a logistic regression algorithm.

You must be able to explain the model's predictions by calculating the importance of each feature, both as an overall global relative importance value and as a measure of local importance for a specific set of predictions.

You need to create an explainer that you can use to retrieve the required global and local feature importance values.

Solution: Create a PFIExplainer.

Does the solution meet the goal?
Modeling Deployment and Monitoring
A biomedical research company plans to enroll people in an experimental medical treatment trial.

You create and train a binary classification model to support selection and admission of patients to the trial. The model includes the following features: Age, Gender, and Ethnicity.

The model returns different performance metrics for people from different ethnic groups.

You need to use Fairlearn to mitigate and minimize disparities for each category in the Ethnicity feature.

Which technique and constraint should you use? To answer, select the appropriate options in the answer area.

NOTE: Each correct selection is worth one point.

Data Preparation and Processing Modeling
You run an experiment that uses an AutoMLConfig class to define an automated machine learning task with a maximum of ten model training iterations. The task will attempt to find the best performing model based on a metric named accuracy.

You submit the experiment with the following code:


You need to create Python code that returns the best model that is generated by the automated machine learning task.

Which code segment should you use?
Data Preparation and Processing Modeling
You create a multi-class image classification deep learning experiment by using the PyTorch framework. You plan to run the experiment on an Azure Compute cluster that has nodes with GPU's.

You need to define an Azure Machine Learning service pipeline to perform the monthly retraining of the image classification model. The pipeline must run with minimal cost and minimize the time required to train the model.

Which three pipeline steps should you run in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.

Designing and Implementing Data Science Solutions Deployment and Monitoring